# ONE-POT SYNTHESIS OF 7-FLUORO-5-METHYL-4H-1,4-BENZOTHIAZINES

# Mahendra Kumar, Neerja Sharma, Rajni Gupta and R.R. Gupta\* Department of Chemistry, University of Rajasthan, Jaipur - 302004, India

Abstract : One-pot synthesis of 4H-1,4-benzothiazines involving the condensation and oxidative cyclisation of 2-amino-5-fluoro-3-methyl benzenethiol with  $\beta$ -diketones/ $\beta$ -ketoesters in dimethyl sulfoxide is reported.

## Introduction

1,4-Benzothiazines resemble structurally to phenothiazines in having a fold along nitrogen-sulphur axis which is considered a structural specificity to impart a wide specturm of biological activities to phenothiazines. 1,4-Benzothiazines are anticipated to possess biological activities similar to phenothiazines (1-9). In our research programmes to develop new drugs it has been considered worthwhile to synthesize title compounds.

#### Experimental

Melting points of the synthesized compounds are uncorrected. The purity has been checked by thin layer chromatography. Characterization of synthesized compound was done by spectral studies. The infrared spectra were recorded on Nicolet-Magna IR Spectrophotometer model 550 using KBr disc. NMR spectra were recorded on 90 MHz Jeol FX90 FT NMR using TMS as internal standard.

## 1. Preparation of 4H-1,4-benzothiazines(4a-g)

To the stirred suspension of  $\beta$ -diketones/ $\beta$ -ketoesters 2 in dimethyl sulfoxide (5 ml.) was added 2-amino-5-fluoro-3-methyl benzenethiol 1 and the mixture was



Scheme-1

refluxed for 20-30 minutes. The reaction mixture was concentrated and washed with petroleum ether and crystallized from methanol (Scheme-1). Analytical data of synthesized compounds is tabulated in table 1.

#### Result and discussion

The condensation and oxidative cyclisation of 2-amino-5-fluoro-3methylbenzenethiol <u>1</u> with  $\beta$ -diketones /  $\beta$ -ketoesters <u>2</u> in dimethyl sulfoxide is believed to involve the formation of a enaminoketone intermediate <u>3</u>. Under experimental conditions 2-aminothiophenols are readily oxidized to bis(2-aminophenyl) disulphides which cyclize to 4H-1,4-benzothiazines 4 by scission of sulphur-sulphur bond due to high reactivity of 2-position of enaminoketone system towards nucleophilic attack. IR and NMR data of synthesized benzothiazines are included in tables 2 and 3 respectively.

| Compound | Molecular                                            | Mpt | Yield | %                      |                        |                        |
|----------|------------------------------------------------------|-----|-------|------------------------|------------------------|------------------------|
| 4        | formula                                              | •C  | %     | C<br>Found<br>(Calcd.) | H<br>Found<br>(Calcd.) | N<br>Found<br>(Caled.) |
| a        | C <sub>12</sub> H <sub>12</sub> FNO <sub>2</sub> S   | 135 | 46    | 57.10<br>(56.91)       | 4.76<br>(4.74)         | 5.50<br>(5.53)         |
| b        | C <sub>13</sub> H <sub>14</sub> FNO <sub>2</sub> S   | 170 | 48    | 58.12<br>(58.42)       | 5.22<br>(5.24)         | 5.26<br>(5.24)         |
| с        | C <sub>17</sub> H <sub>13</sub> FCINOS               | 148 | 55    | 61.01<br>(61.16)       | 3.91<br>(3.89)         | 4.17<br>(4.19)         |
| d        | C <sub>12</sub> H <sub>12</sub> FNOS                 | 192 | 40    | 60.55<br>(60.75)       | 5.08<br>(5.06)         | 5.92<br>(5.90)         |
| e        | C <sub>18</sub> H <sub>16</sub> FNOS                 | 96  | 50    | 66.00<br>(65.65)       | 4.88<br>(4.86)         | 4.23<br>(4.25)         |
| f        | C <sub>15</sub> H <sub>16</sub> FNOS                 | 105 | 55    | 68.82<br>(69.00)       | 5.08<br>(5.11)         | 4.50<br>(4.47)         |
| g        | C <sub>17</sub> H <sub>12</sub> FCl <sub>2</sub> NOS | 102 | 48    | 55.20<br>(55.43)       | 3.24<br>(3.26)         | 3.79<br>(3.80)         |

Table 1 : Physical data of 4H-1,4-benzothiazines

| Table 2 : | Infrared | spectral | data | of | 4H-1 | ,4-Benzothiazines |
|-----------|----------|----------|------|----|------|-------------------|
|-----------|----------|----------|------|----|------|-------------------|

| Compound | N-H  | C=0  | С-Н  | С-О-С | C-F | C-CI |
|----------|------|------|------|-------|-----|------|
| 4        | Α    | B    | С    | D     | E   | F    |
| a        | 3390 | 1595 | 1450 | 1240  | 840 |      |
|          |      |      | 1350 | 1050  |     |      |
| b        | 3400 | 1600 | 1420 | 1260  | 800 |      |
|          |      |      | 1380 | 1040  |     |      |
| с        | 3380 | 1640 | 1450 |       | 830 | 780  |
|          |      |      | 1360 |       |     |      |
| d        | 3400 | 1650 | 1450 |       | 800 |      |
|          |      |      | 1380 |       |     |      |
| e        | 3395 | 1590 | 1440 | 1260  | 810 |      |
|          |      |      | 1375 | 1030  |     |      |
| f        | 3340 | 1620 | 1450 |       | 850 |      |
|          |      |      | 1330 |       |     |      |
| g        | 3400 | 1600 | 1440 |       | 890 | 756  |
|          |      |      | 1350 |       |     |      |

| Compound<br>4 | Solvent | δ (ppm)          | Hydrogen | Multiplicity | Assignment                                  |
|---------------|---------|------------------|----------|--------------|---------------------------------------------|
| a             | DMSO-d6 | 8.02             | 1        | Singlet      | N-H Proton                                  |
|               |         | 7.52-6.53        | 2        | Multiplet    | Aromatic Protons                            |
|               |         | 2,3              | 3        | Singlet      | OCH, Protons of COOCH, at C,                |
|               |         | 2.02             | 3        | Singlet      | CH, Protons at C,                           |
|               |         | 1.80             | 3        | Singlet      | CH, Protons at C,                           |
| b             | DMSO-d6 | 8.40             | 1        | Singlet      | N-H Proton                                  |
|               |         | 7.92-7.16        | 2        | Multiplet    | Aromatic Protons                            |
|               |         | 4.43-4.12        | 2        | Quartet      | OCH, Protons of COOC, H, at C.              |
|               |         | 2.78             | 3        | Singlet      | CH. Protons at C                            |
|               |         | 2.06             | 3        | Singlet      | CH. Protons at C.                           |
|               |         | 1.45-1.20        | 3        | Triplet      | CH. Protons of COOC.H. at C.                |
| _             |         | 0.17             | ,        | Simulat      |                                             |
| C             | DM20-00 | 8.1/<br>777 ( 57 | l        | Multiplet    | N-H Proton                                  |
|               |         | 1.13-0.33        | 0        | Numplet      | Aromatic Protons                            |
|               |         | 2.22             | 3        | Singlet      | CH, Protons at C,                           |
|               |         | 1.84             | 3        | Singlet      | CH, Protons at C,                           |
| d             | DMSO-d6 | 7.90             | 1        | Singlet      | N-H Proton                                  |
|               |         | 7.60-7.0         | 2        | Multiplet    | Aromatic Protons                            |
|               |         | 2.53             | 3        | Singlet      | CH. Protons of COCH at C.                   |
|               |         | 2.12             | 3        | Singlet      | CH. Protons C.                              |
|               |         | 1.83             | 3        | Singlet      | CH. Protons at C.                           |
|               |         | 0.00             | ,        | Ci- alat     |                                             |
| e             | DW20-06 | 8.08             | I        | Singlet      | N-H Proton                                  |
|               |         | 7.44-7.13        | 0        | Multiplet    | Aromatic Protons                            |
|               |         | 3.89             | 3        | Singlet      | OCH, Protons of COC, $H_1OCH_1(m)$ at $C_2$ |
|               |         | 3.01             | 3        | Singlet      | CH, Protons at C,                           |
|               |         | 2.53             | 3        | Singlet      | CH, Protons at C,                           |
| f             | DMSO-d6 | 8.24             | 1        | Singlet      | N-H Proton                                  |
|               |         | 7.73-6.68        | 6        | Multiplet    | Aromatic Protons                            |
|               |         | 2.53             | 3        | Singlet      | CH, Protons of COC, H, CH, (p) at C,        |
|               |         | 2.12             | 3        | Singlet      | CH, Protons at C,                           |
|               |         | 1.77             | 3        | Singlet      | CH, Protons at C,                           |
| g             | DMSO-d6 | 8.40             | 1        | Singlet      | N-H Proton                                  |
| -             |         | 7.7-6.03         | 5        | Multiplet    | Aromatic Protons                            |
|               |         | 2.3              | 3        | Singlet      | CH, Protons at C,                           |
|               |         | 1.2              | 3        | Singlet      | CH, Protons at C,                           |

Table 3 : NMR spectra data of 4H-1,4-benzothiazines

### REFERENCES

- 1. R.R. Gupta (Ed.) "Phenothiazines and 1,4-Benzothiazines-Chemical and Biochemical Aspects". Elsevier, Amsterdam, 1988.
- H. Keyzer, G.M. Eckert, I.S. Forrest, R.R. Gupta, F. Gutmann, J. Molnar (Eds.), "Thiazines and Structurally Related Compounds" (Proceedings of Sixth International Conference on Phenothiazines and Structurally Related Psychotropic Compounds, Pasadena, California, Sep. 11-14 (1990). Krieger Publishing Company, Malabar, Florida, USA (1992).
- 3. S.K. Mukherji, M. Jain, A. Gupta, V. Saraswat and R.R. Gupta, Ind. J. Chem. 33B, 990 (1994).
- 4. Mukesh K. Nyati, Dinesh Rai, R.R. Gupta, P.K. Dev, in vivo II, 95 (1997).
- 5. Dinesh Rai, Vandana Gupta and R.R. Gupta, Heterocycl. Commun. 2, 273 (1996).
- 6. R.R. Gupta, R.S. Rathore, M. Jain and V. Saraswat, Pharmazie 47, 229 (1992).
- 7. Vandana Gupta and R.R. Gupta, Prakt. J. Chem. 333, 153 (1991).
- 8. A. Garofalo, G. Campiani., I Fiorini and Nacciv, Farmaco 48, 275, (1993).
- 9. R.R. Gupta and R. Kumar, J. Fluor. Chem. 31, 19 (1986).

### Received on January 28, 1998